
RESEARCH STATEMENT

EMILY HILL

Today’s software is large and complex, with systems consisting of millions of lines of code. Developers who 
are new to a software project face significant challenges in locating  code related to their maintenance tasks 
of fixing bugs or adding new features. Developers can simply be handed a bug and told to fix it---even when 
they have no idea where to begin. In fact, research has shown that a developer typically spends more time 
locating and understanding code during maintenance than modifying it.

My primary research interests are in software engineering; specifically, my work focuses on reducing 
software maintenance costs through intuitive software engineering and program comprehension tools. To 
build more effective software engineering  tools, I developed a model of word usage in software. Currently 
implemented for Java, the model provides software engineering  tool designers access to both structural and 
linguistic information about the source code, where previously only structural information was available. I 
have applied this model to software search and program exploration tools, and evaluation has shown it to 
outperform competing state of the art approaches.

In addition to my thesis research in software maintenance, I have significant research experience investigating 
a variety of other topics in software engineering, including: testing web applications, protecting  the privacy 
of run-time debugging feedback, automatically mining potential program refactorings, as well as designing 
and analyzing  software engineering experiments. Through my varying  research experiences, I have 
collaborated with and mentored a diverse range of students.

DISSERTATION RESEARCH

During software development and maintenance, human programmers read and modify the code that they 
and others produce, creating  code artifacts that are readable as well as runnable. While the algorithm is 
conveyed by the programming language syntax and semantics, higher-level algorithmic steps and domain 
concepts are expressed through identifier names and comments. This textual information from comments 
and identifiers has been used to build software search tools for maintenance, but to date, their accuracy is 
not yet high enough for widespread adoption by practitioners.

There are two main issues which lead to inaccurate search results in software: (1) the developer chooses 
poor query words, or (2) the search mechanism does not take the context of the query words into account. 
My dissertation research addresses both of these issues with an inter-disciplinary approach that combines 
aspects of software engineering, program analysis, natural language processing, computational linguistics, 
information retrieval, text mining, and machine learning.

Selecting good query words. The first step in producing accurate search results is to find the “right” query 
words. Good query words not only describe the code for which the developer is searching, but also match 
the words used in the software’s implementation. In my research, I address this problem in two ways. First, I 
developed a novel query reformulation tool that enables the developer to (1) quickly discriminate between 
relevant and irrelevant results, and (2) spark further query refinements [ICSE 09]. Second, I developed text 
mining techniques to automatically expand abbreviations in code [MSR 08] and collaboratively developed 
more accurate identifier splitting techniques [MSR 09]. Abbreviation expansion and identifier splitting 
improve search accuracy by ensuring the query words match the words extracted from the source code (e.g., 
ensuring the query word “string” will match the abbreviation “str” in the identifier “strlength”).

Utilizing  query words in context. The next step in producing  accurate search results is to match the query 
words in context. For example, consider searching  for the query “add item” in item processing software. The 
words “add” and “item” are so general and appear so frequently that this query will return many irrelevant 
results using  existing  approaches. In my research, I address this problem by more highly ranking search 



results where the query words appear within the same linguistic or structural context. I take linguistic context 
into account by searching for the query words within specific word relationships, for example, by searching 
for the verb “add” and its object, “item”. To realize this linguistic context, I developed a word usage model 
for software that extracts the noun phrases and verbs, along  with their arguments, which describe the entities 
in the program. From these highly relevant results, I take structural context into account by automatically 
exploring structural edges and adding any relevant entities to the search results [ASE 07].

A word usage model for software. In the course of solving the practical problem of program search for 
maintenance, I developed a theoretical model of word usage in software, currently implemented for Java. 
The software word usage model (SWUM) is designed to be an interface between software engineering  tool 
designers and researchers working on improved linguistic analyses for software. To date, I have developed 
and implemented a set of rules to automatically extract SWUM for Java. The rules were developed by 
analyzing  naming conventions in over 9,000 open source Java programs using exploratory data analysis 
techniques. In addition, I have applied the model to build more effective software engineering  tools for 
program search and exploration. Beyond program search and exploration, SWUM has a wide range of 
applications, including: program comprehension tools (automatic generation of UML diagrams or single-
sentence comments for method declarations and invocations), software quality (testing  with abstract types, 
detecting poorly named methods), and further development of customized linguistic analyses for software.

Evaluation. Throughout the research process, I evaluated my research in terms of accuracy and effectiveness.  
For example, I evaluated the accuracy of my program exploration tool by predicting  what structurally 
connected components were relevant to a given maintenance task [ASE 07]. Relevance of program elements 
for each maintenance task was pre-determined by three independent software developers. The experiment 
showed that my program exploration tool, which uses both linguistic and structural information, 
outperformed the competing state of the art approach, which uses only structural information. As I complete 
my thesis, I will revisit this evaluation using the improved linguistic information provided by SWUM.

I have also evaluated the accuracy of automatically expanding  abbreviations [MSR 08] and splitting 
identifiers [MSR 09]. For both studies, the gold set was created by two independent programmers. In an 
effort to reduce the human subjects’ work, they were given identifiers not contained in an English dictionary, 
since non-dictionary words are more likely to contain abbreviations and identifiers which need splitting. In 
both studies, our automated techniques outperformed the competing state of the art.

In addition, I have performed a preliminary study of the accuracy of SWUM’s extraction rules. Four human 
subjects were asked to identify the verb and objects for 20 method declarations. When compared with this 
gold set, SWUM’s automatic extraction rules achieve 84% accuracy. I am currently expanding  this study to 
include additional programmers and method declarations.

Finally, I have also evaluated the impact of my research on software engineering tools. Thus far, I have 
evaluated my query reformulation tool in terms of effort and effectiveness. In the study, 22 software 
developers were asked to search for code related to 28  maintenance tasks, 14 per subject. Compared with 
the competing  state of the art, my query reformulation technique required less effort from the subjects and 
was more effective in locating relevant methods. In completing my thesis, I will extend this study to 
quantitatively evaluate my improved search technique.

FUTURE RESEARCH PLANS

As I complete my thesis, I will continue refining my search algorithm and evaluate the impact of my software 
word usage model (SWUM) on program search and exploration. Beyond that I plan to pursue extensions to 
my thesis work as well as take my research in new directions.

Emily Hill Research Statement 

2



Extensions

In the short term, I will continue refining the extraction algorithm for automatically constructing SWUM for 
Java, and extend it to other programming languages such as C and C++. I plan to evaluate the success of 
using SWUM for other search-based tasks, such as documentation to source code traceability.

In addition, I would like to explore using SWUM for novice program comprehension. It is possible to use 
SWUM to automatically generate an English phrase for an arbitrary program statement. I plan to investigate 
whether automatically generated phrases for complicated Java statements improve program comprehension 
time in novices.

New Directions

The idea of using natural language information to improve software engineering tools is relatively new, and 
has only been applied in a few situations. In the long term, I plan to use my insights from developing SWUM 
to improve software engineering tools beyond program search:

Automatic Extraction of UML Diagrams. UML class diagrams are used to comprehend legacy systems as 
well as to design and document newly created ones. Software engineering  tools like IBM’s Rational Software 
Architect can automatically extract UML class diagrams. However, existing automatic techniques simply 
extract all class entities, without differentiating between methods and fields implementing high-level 
concepts versus low-level implementation details, which may distract from comprehension. By developing 
advanced linguistic and structural analyses such as those used in SWUM, I can create automated techniques 
capable of extracting UML diagrams at different levels of granularity and thus enhance comprehension.

Random Test Generation. Building  on my previous research into testing as well as my thesis work, my next 
challenge is to use the linguistic and structural information in SWUM to improve random test generation for 
object-oriented programs. Software testing  helps improve software reliability by exposing  bugs, but 
developing  effective test cases is notoriously time consuming. Carlos Pacheco, et al. recently suggested a 
feedback-directed random test generation technique that uses structural co-occurrence to determine which 
previously created objects are effective inputs to the next method call in the test case. Based on observations 
from creating SWUM, I would like to extend the idea of structural co-occurrence to include linguistically 
related objects that will create more diverse test cases capable of exercising more of the software with fewer 
tests.

In pursuing  these research directions I will continue facilitating  the creation of intuitive software engineering 
tools. My goal is for software engineering  tools to support developers using the very information human 
developers would use---linguistic information from source code and other software artifacts in addition to 
programming  language syntax and semantics. I plan to continue my interdisciplinary research by 
collaborating  with researchers both internal and external to the university, as well as by getting feedback 
from software engineers in industry.

Emily Hill Research Statement 

3


